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Non-rigid 3D shape retrieval has become an active and important research topic in content-based 3D

object retrieval. The aim of this paper is to measure and compare the performance of state-of-the-art

methods for non-rigid 3D shape retrieval. The paper develops a new benchmark consisting of 600 non-

rigid 3D watertight meshes, which are equally classified into 30 categories, to carry out experiments for

11 different algorithms, whose retrieval accuracies are evaluated using six commonly utilized

measures. Models and evaluation tools of the new benchmark are publicly available on our web site [1].

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

With the recent advancement in computer science and technol-
ogy, 3D models have become widely used in many application areas,
such as computer aided design, multimedia entertainment, electronic
commerce, digital library, and so on. Since the number of 3D objects
grows rapidly, there exist increasing demands to retrieve them based
on their shapes. In the last few years, the problem of Non-rigid 3D

Shape Retrieval has become an active research topic in 3D shape
retrieval and attracted more and more researchers from several
research communities including pattern recognition [2,3], computer
graphics [4,5], computer vision [6,7], and applied mathematics [8,9].
In fact, how to quickly and accurately compare non-rigid 3D shapes is
not only important in practice but also interesting in theory. On the
one hand, deformable objects are widely seen in both real and virtual
ll rights reserved.

er Science and Technology,
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worlds. Take Fig. 1 for an example, a hand can appear in many
different poses by articulating around its joints. Those articulated
hands are very likely to be recognized as different kinds of objects
using many traditional rigid-shape analyzing techniques (e.g., meth-
ods compared in the paper [10] that proposed the Princeton Shape
Benchmark). On the other hand, many elegant mathematical tools,
such as Singular Value Decomposition [11], Multidimensional Scaling
[12], Heat Kernel diffusion [13], Laplace–Beltrami operator [14], etc.,
are well suited for the analysis of non-rigid 3D shapes. Usually,
creating an isometry-invariant 3D shape descriptor can be formulated
as an interesting mathematical problem.

As the number of algorithms for non-rigid 3D shape retrieval
increases rapidly, it is often required to compare them in a fair
and effective way. However, most of these methods need to be
implemented on watertight manifolds, while both collecting and
creating large amounts of those kinds of deformable models are
not trivial. Until recently, the most commonly used non-rigid 3D
shape benchmark (i.e., McGill 3D Shape Database [15]) contains
only 255 models. That somehow hinders the further investigation
in this research direction. To address the problem, we designed an
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efficient processing framework to build a new large-scale bench-
mark consisting of 600 watertight triangle meshes and organized
a contest called SHREC’11 Track: Shape Retrieval on Non-rigid3D

Watertight Meshes. In this contest, we asked each participant to
submit up to five distance matrices obtained using their methods
within 1 week. Finally, 11 different algorithms were proposed by
nine research groups and their retrieval accuracies were evalu-
ated and compared based on six standard measures. This paper is
an extended version of the conference paper [16] presented for
the contest.

Major contributions of this paper are threefold. First, we
propose an efficient processing framework to generate large
numbers of non-rigid 3D watertight meshes, based on which we
Fig. 1. Examples of non-rigid 3D models.

Fig. 2. Examples of models in our databas
build a new non-rigid 3D shape benchmark. Second, we describe
and implement a set of methods that roughly represent the state
of the art in non-rigid 3D shape retrieval. Third, we evaluate and
compare the performance of these methods using the new
benchmark.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 describes how to generate the
database for our benchmark. Section 4 mentions how to evaluate
the retrieval performance and Section 5 provides the information
of contributors for the benchmark. Then, we present 11 non-rigid
3D shape retrieval methods in Section 6, followed by Section 7
which demonstrates and analyzes experimental results. Finally,
we conclude the paper in Section 8.
2. Related work

2.1. 3D shape retrieval techniques

The explosion in the number of available 3D models has led to
the rapid development of 3D shape retrieval systems that, given a
query object, retrieve similar 3D objects [8]. Up to now, a large
e that is classified into 30 categories.
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number of methods for 3D shape retrieval have been proposed,
such as Shape Distribution (D2) [4], Spherical Harmonic Descrip-
tor (SHD) [17], Light Field Descriptor (LFD) [18], Elevator Descrip-
tor (ED) [19], Shape Impact Descriptor (SID) [20], etc. However,
most of these algorithms are only suitable for the retrieval of rigid
3D shapes and how to accurately and efficiently calculate the
similarity between non-rigid models is still considered to be a
challenging problem. For more information about 3D shape
retrieval, we refer the reader to some recent surveys [8,10].

In general, existing methods for non-rigid 3D shape retrieval
can be roughly classified into algorithms employing local features,
topological structures, isometry-invariant global geometric prop-
erties, direct shape matching, or canonical forms. The first solu-
tion is to measure the dissimilarity between two models based on
their local features that are insensitive to isometric transforma-
tions. For instance, the well-known Spin Images [21] were utilized
in [22], where they described a 3D object as a word histogram by
the vector quantization of all local features (Spin Images)
extracted on the surface. Ovsjanikov et al. [23] made use of the
Heat Kernel Signature (HKS) [13], which is based on the proper-
ties of the heat diffusion process on a 3D shape, and designed a
spatially sensitive bag-of-features approach to retrieve non-rigid
models in large databases. Ohbuchi et al. [24] proposed a view-
based method using salient local features (SIFTs [25]). They
represented a whole object as a histogram by using bag-of-
features for 2D salient local descriptors extracted from a set of
depth-buffer views captured uniformly around the object. More
recently, Wang et al. [26] presented Intrinsic Spin Images (ISIs) by
generalizing the traditional Spin Images [21] from 3D space to N-
dimensional intrinsic shape space, in which their ISIs shape
descriptors are calculated on MDS embedding representations of
original 3D surfaces.

The second solution is to use topological structures to compare
deformable 3D objects. For example, Hilaga et al. [27] developed
the Topology Matching technique to compute the similarity
between two models via the shape matching of their Multi-
resolutional Reeb Graphs (MRGs), while Sundar et al. [28] com-
pared 3D objects by applying graph matching techniques to
match their skeletons. Better retrieval performance can be
obtained [29] by using topological and geometric features
together.

For the third category, isometric-invariant global geometric
properties (e.g., geodesic distance) are utilized for non-rigid 3D
shape retrieval. Reuter et al. [30] suggested using the model’s
Laplace–Beltrami spectra, while Jain and Zhang [31] proposed to
use eigenvalues of the geodesic distance matrix of a 3D object to
generate 3D shape descriptors that are isometry-invariant. Also,
Mahmoudi and Sapiro [32] designed six such signatures based on
the distributions of intrinsic distances including diffusion dis-
tance, geodesic distance, a curvature weighted distance, etc.

Many investigations have also been made trying to measure
the exact dissimilarity between non-rigid 3D models. For
instance, Mémoli and Sapiro [9] introduced a theoretical frame-
work to directly compare non-rigid 3D shapes based on the
Gromov–Hausdorff (GH) distance. Since calculating the exact
value of the GH distance is computationally expensive, Mémoli
[33] proposed to approximate the GH distance by solving a mass
transportation problem, which is a quadratic optimization pro-
blem with linear constraints. Bronstein et al. [34] formulated the
GH distance as a MDS-like continuous optimization problem,
leading to a numerically exact calculation of the GH distance
between surfaces. Apparently, an ideal and complete solution for
the comparison of two non-rigid shapes is to match them directly.
However, due to its high computational complexity, direct shape
matching is impractical for real shape retrieval systems that
require instant responses.
The utilization of canonical forms is also a promising solution
for non-rigid 3D shape retrieval. Indeed, with canonical forms,
any shape searching algorithm can be applied for the retrieval of
non-rigid models. As we know, excellent performance, in terms of
both accuracy and efficiency, has been achieved for rigid 3D shape
retrieval. Obviously, if it is possible to construct canonical forms
with well-preserved features, the problem of non-rigid 3D shape
retrieval could be well resolved. The idea of generating canonical
forms in 3D domain was initially proposed in [35], where the
authors introduced an invariant representation for isometric
surfaces by applying MDS embedding to map the original surface
to a small dimensional Euclidean space in which geodesic
distances can be approximated by Euclidean ones. In [35], three
MDS techniques were discussed and compared to construct such
3D canonical forms. To verify the effectiveness of their canonical
forms, they [35] computed a moment-based shape descriptor
from embedded surfaces and carried out a simple experiment for
object classification. More recently, Lian et al. [36] presented a
framework for non-rigid 3D shape retrieval based on the combi-
nation of Least Square MDS embedding and a visual similarity
based approach. Thanks to the utilization of canonical forms,
superior performance was obtained in [36] compared to other
existing methods.

2.2. 3D shape retrieval benchmarks

To evaluate and compare the performance of methods for 3D
shape retrieval, a number of benchmarks have been developed.
Meanwhile, the 3D SHape REtrieval Contest (SHREC) [37], an
annual event started from 2006, also provides researchers various
resources to compare their algorithms. In this section, we discuss
several representative benchmarks that are commonly used in the
area of 3D shape retrieval.

The Princeton Shape Benchmark (PSB) [10] is widely acknowl-
edged as the most prominent 3D shape retrieval benchmark.
Evaluation measures they proposed [10] have already become
standard methods to evaluate retrieval performance. The PSB
database contains 1814 polygonal models that are divided into
separate training and test sets, and it also includes a set of
hierarchical classifications. The PSB test set with base classifica-
tion, which is mostly utilized in the literature, consists of 907
generic models that are classified into 92 categories. The max-
imum number of objects in a class is 50, while the minimum
number is 4.

Although the PSB benchmark was built rigorously, it still
contains many limitations, such as too few models in some
classes, evaluation biases caused by unequal number of models
in each class, and so on. To solve those problems, Fang et al. [38]
proposed the NIST (National Institute of Standards and Technol-
ogy) Shape Benchmark (NSB). The NSB benchmark is composed of
800 generic models that are classified into 40 categories mainly
based on their visual similarities, and each class contains an equal
number (20) of models. They also carried out experiments to
validate the reliability of their benchmark.

The PSB and NSB benchmark were both designed for the
retrieval of generic 3D models that can be any kinds of objects
in the world. However, there are also requirements for many
specific applications, like the retrieval of CAD models, architec-
tural models, protein models, etc. Among them, how to search for
desired CAD models is one of the most important applications in
content-based 3D object retrieval. Jayanti et al. [39] developed the
Engineering Shape Benchmark (ESB) that consists of 867 3D CAD
models. They classified the database into 45 categories. It has
maximum 58 and minimum four objects in a class.

Since many 3D feature extraction methods employ elegant
mathematical tools which can only be applied on watertight
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manifolds, there exist increasing demands for such benchmarks
that are purely composed of 3D watertight meshes. Giorgi et al.
[40] organized the watertight model retrieval track under SHREC
2007 by using their database that is made of 400 watertight
polygonal models, classified into 20 classes of 20 models each.
They manually built the ground truth to ensure that the classes
exhibit sufficient and diverse variations, from pose change to
shape variability in the same semantic group.

As mentioned above, non-rigid 3D shape retrieval has become
an active topic in many research communities. The most com-
monly used benchmark for this topic is the McGill articulated 3D
shape Benchmark (McGill) [15]. However, the McGill database
merely contains 10 categories, totally 255 articulated 3D meshes.
When performing statistical analysis, the size of the database is
typically too small to reduce possible bias and establish accurate
evaluation. Furthermore, the largest class in the McGill database
has 31 models while the smallest class contains 20 objects. The
unequal number of models in each class could also cause evalua-
tion bias. In this paper, we propose an effective scheme to create
articulated watertight meshes and develop a large-scale database
consisting of 600 non-rigid watertight meshes with 20 models in
each class.
3. Data creation

The new benchmark consists of 600 watertight triangle
meshes that are derived from 30 original models, among which
26 objects are collected from several freely accessible repositories
(e.g., PSB database [10], McGill database [15], TOSCA shapes [12],
etc.) while the other four models (i.e., lamp, paper, scissor, and
twoballs) are created by us using Autodesk 3d Max. Given a 3D
mesh, we use Autodesk 3d Max to build its skeleton and then
generate 19 deformed versions of the mesh by articulating parts
around its joints in different ways (see Fig. 3). To remove the
inner structures of those articulated models, as shown in Fig. 4,
we implement our own software to first capture 18 depth-buffer
views for the normalized object on the vertices of a unit geodesic
sphere, and then convert those images into a point cloud. Finally,
we wrap the point cloud into a polygon surface and fix it to form a
watertight 3D manifold without any topological errors by using
Geomagic, which can be automatically implemented with
recorded macros. As shown in Fig. 2, those 600 non-rigid models
have been equally classified into 30 categories.
Fig. 3. Generating an articulated model for a 3D mesh. Given the original mesh (a),

we first build its skeleton (b), and then articulate (c) the model around it joins to

obtain the new mesh (d).

Fig. 4. Creating the watertight manifold for a 3D mesh. We first normalize the original m

buffer views (b) of the 3D mesh are captured on the 18 vertices of the bounding sphere

then utilized to generate a polygonal mesh (d). Finally, by fixing holes and other errors
4. Evaluation

When running algorithms on the database, we first calculate the
dissimilarity value between every two objects, and then generate a
distance matrix for each method. The matrix is composed of
600�600 floating point numbers, where the number at position
(i,j) represents the dissimilarity between models i and j. Analyzing
those distance matrices, we evaluate their retrieval performance
based on the precision–recall curve and other five quantitative
measures (see [10] for detailed definitions):
�

od

. Aft

on
Precision–recall curve: A curve illustrating the relationship
between the precision and recall of a retrieval algorithm.
Precision is the percentage of retrieved objects that are
relevant, while recall is the percentage of relevant models
that are retrieved.

�
 Nearest neighbor (NN): The percentage of closest matches that

are in the same class as the query.

�
 First tier (FT) and second tier (ST): The percentage of models

belonging to the query’s class that appear within the top NT

retrieved models, where NT depends on the size of the query’s
class. More specifically, assume that the query’s class contains
NC models, NT ¼NC�1 for the first tier and NT ¼ 2ðNC�1Þ for
the second tier.

�
 E-measure (E): A composite measure of the precision and recall

for a fixed number of retrieved models. The E-measure is
defined as E¼ 2=ð1=Pþ1=RÞ, where P and R are the precision
and recall, respectively, computed for the first 32 retrieved
models.

�
 Discounted cumulative gain (DCG): A statistic that measures the

usefulness (i.e., gain) of a retrieved model based on its position
in the ranked list. The gain is accumulated from the top of the
ranked list to the bottom with the gain of each result reduced
logarithmically proportional to the position of the result.
5. Contributors

The first two authors of this paper built the benchmark and
organized the SHREC’11 Track: Shape Retrieval on Non-rigid 3D

Watertight Meshes. Totally, nine groups took part in the contest
and implemented the following 11 methods:
1.
 FOG: submitted by Shun Kawamura, Yukinori Kurita and
Ryutarou Ohbuchi from University of Yamanashi, Japan.
2.
 BOW-LSD: submitted by Guillaume Lavoué from Université de
Lyon, CNRS, France.
3.
 MDS-CM-BOF: submitted by Zhouhui Lian from Peking Uni-
versity, China, and Afzal Godil from National Institute of
Standards and Technology, USA.
4.
 BOGH: submitted by Hien Van Nguyen from University of
Maryland, College Park, USA and Fatih Porikli from Mitsubishi
Electric Research Laboratories, USA.
5.
 LSF: submitted by Yuki Ohkita, Yuya Ohishi, Shun Kawamura
and Ryutarou Ohbuchi from University of Yamanashi, Japan.
el (a) so that it is located inside a unit geodesic sphere, and then a set of depth-

erwards, we convert those depth-buffer images into a point cloud (c), which is

the surface (d), we obtain a watertight manifold (e) without inner structures.
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6.
 ShapeDNA: submitted by Martin Reuter from Martinos Center
for Biomedical Imaging, Massachusetts General Hospital/Har-
vard Medical/MIT, USA.
7.
 Harris3DGeoMap and HKS: submitted by Ivan Sipiran and
Benjamin Bustos from University of Chile, Chile.
8.
 MeshSIFT and SD-GDM: submitted by Dirk Smeets, Jeroen
Hermans, Dirk Vandermeulen and Paul Suetens from Katho-
lieke Universiteit Leuven, Belgium.
9.
 PatchBOF: submitted by Hedi Tabia from University Lille 1,
France and Mohamed Daoudi from Institut TELECOM, France.
6. Methods

This section describes the methods we compared.

6.1. FOG: features on geodesics, by Kawamura, Kurita and Ohbuchi

The Features on Geodesics (FOG) algorithm is based on a
diffusion-like distance on 3D mesh surface to achieve robustness
against articulation. In addition, the FOG is designed to accept
diverse surface-based 3D models, e.g., non-watertight mesh or
polygon-soup.

To compute features, the FOG method first resamples the
surface of a model by uniformly and quasi-randomly generating
Nsp oriented points (Nsp � 3000). These points are then recon-
structed into a mesh by using k-nearest neighbor connectivity.
This remeshing gains invariances to shape representation and
tessellation, in exchange for retrieval accuracy.

After remeshing, the algorithm computes a set of local-FOG
features at Nk (Nk � 500) randomly selected key-points on the
mesh by using the Manifold Ranking algorithm developed by
Zhou et al. [41]. The manifold ranking algorithm is originally
designed to compute distances among features in high dimen-
sional feature space. The k-nearest neighbor meshing in the
feature space of the original manifold ranking algorithm is
replaced with the mesh resampling mentioned above.

For each key-point, a local-FOG is computed as a set of
geodesic-like distances for vertices that lie within a radius r

sphere of interest (using 3D Euclidean distance). A local-FOG
feature centered at the key-point captures local geometry at
multiple scales, by having multiple radius of interest r and
multiple parameters s that controls the diffusion speed during
the computation of manifold ranking.

A histogram of these distances coupled with a local geometrical
feature within the same sphere becomes the local-FOG feature at
the key-point. A set of Nk local FOG features are integrated into a
feature vector per 3D model by using the bag-of-words approach.
For the FOG algorithm, Kullback–Leibler Divergence is used to
compute the distance between two features.

6.2. BOW-LSD: bag of words with local spectral descriptors, by

Lavoué

The method [42] is based on the Bag of Words (BoWs)
paradigm. For a given 3D shape, the proposed approach considers
a set of feature points uniformly sampled on the surface and
associated with local Fourier descriptors; this descriptor is com-
puted in the neighborhood of each feature point by projecting the
geometry onto the eigenvectors of the Laplace–Beltrami operator.
In a preliminary step, a visual dictionary is built by clustering a
large set of feature descriptors, then each 3D shape is described
by an histogram of occurrences of these visual words.

In this method, a uniform sampling is first utilized to generate
feature points on the mesh surface; for this goal, a random set of
np vertices on the mesh is considered as an initial set of seeds, and
then Lloyd relaxation iterations are implemented. Lloyd’s algo-
rithm [43] is a fixed-point iteration that simply consists of
iteratively moving the seeds to the centroids of their Voronoi
cells. Each feature point pi is then associated with a local patch Pi

on which a descriptor is calculated. For each feature point, this
local patch is extracted by considering the connected set of facets
belonging to a given sphere of center pi and of a given radius r.

After that, each feature point is associated to a descriptor
computed on its patch. The Fourier spectra of the patch are
computed by projecting the geometry onto the eigenvectors of
the Laplace–Beltrami operator. The Laplace–Beltrami operator D
is the counterpart of the Laplace operator in Euclidean space. It is
defined as the divergence of the gradient for functions defined
over manifolds. The eigenfunction and eigenvalue pairs ðHk,lkÞ of
this operator satisfy the following relationships: �DHk

¼ lkHk. In
the case of a two-manifold triangular mesh the above eigen-
problem can be discretized and simplified within the finite
element modeling framework [44]: �Qhk

¼ lkDhk, in which hk

denotes the vector ½Hk
1, . . . ,Hk

m� where m is the number of vertices
of the patch. D is the lumped mass matrix and Q is the stiffness
matrix. To resolve this discrete eigenproblem, the fast algorithm
from Vallet and Lévy [45], based on a band-by-band approach and
an efficient eigen-solver, is adopted; hence the eigenvectors hk

(i.e., the manifold harmonic bases) and the associated eigenvalues
are obtained. The spectral coefficients are then calculated as the
inner product between the geometry of the surface and the sorted
eigenvectors. For x (resp. y, zÞ:

~xk ¼/x,hkS¼
Xm

i ¼ 1

xiDi,iH
k
i ð1Þ

The kth (k¼ 1: :m) spectral coefficient amplitude is then defined
as

ck ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~xkÞ

2
þð ~ykÞ

2
þð~zkÞ

2
q

ð2Þ

Thus, for a given patch Pi around a feature point pi, the descriptor
is the spectral amplitude vector ci ¼ ½ci

1, . . . ,ci
nc
�, with ck

i , the kth
spectral coefficient amplitude of the patch Pi. Here, only the nc

first spectral coefficients are considered to limit the descriptor to
low/medium frequencies.

Given a 3D object containing a set of patches Pi associated with
descriptors ci, the next step is to represent it as a distribution of
visual words from a given dictionary. First, the visual dictionary is
created by clustering a huge dataset of descriptors and keep the
nw centroids ck of the clusters as visual words. Then, each patch Pi

is associated with its closest visual word and the bag of words bM

of the whole model M is a nw-dimensional vector containing the
distribution of the visual words over all its patches. The matching
between two bags of words is simply done using the L1 distance.

In this paper, settings of the BOW-LSD algorithm are as follows:
�
 The size nw of the dictionary was set to 200 and the number of
patches np was set to 200.

�
 The visual vocabulary was computed from the database.

�
 The radius of the patches is selected as r¼0.15 and the number

of spectral coefficients is nc¼40.

6.3. MDS-CM-BOF: visual similarity based non-rigid 3D shape

retrieval using MDS, by Lian and Godil

The method [36] performs step by step as follows:
(1)
 Canonical form computation: calculate the canonical form for a
3D model based on MDS and PCA. As shown in Fig. 5, the least
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squares technique with the SAMCOF algorithm is chosen to
implement the MDS embedding (Fig. 5(c)), and before that the
number of vertices on the mesh has been reduced to about
1000 (Fig. 5(b)).
(2)
 Local feature extraction: capture 66 depth-buffer views for the
canonical form on the vertices of a given geodesic sphere, and
then extract salient SIFT descriptors [25] from these views
(Fig. 6).
(3)
 Word histogram construction: generate a word histogram by
vector quantizing each view’s local features against a pre-
specified codebook, such that the shape can be represented by
a set of histograms. It should be pointed out that the code-
book is built by using K-means to create 256 clusters for large
numbers of local features randomly sampled from MDS
embedded McGill database, and a particular data structure
(Fig. 6) is designed to represent the histogram in a more
efficient and effective way [46].
(4)
 Dissimilarity calculation: carry out an efficient multi-view
shape matching (clock matching) scheme [6] to measure the
dissimilarity between two models by calculating the mini-
mum distance of their 24 matching pairs.
Since the method is mainly based on Multidimensional Scaling,
Clock Matching, and Bag-of-Features, for the sake of convenience, it
is denoted as ‘‘MDS-CM-BOF’’. More details of this method can be
found in [36,46,6].
6.4. BOGH: bag of geodesic histograms, by Nguyen and Porikli

The method uses a bag-of-feature approach and normalized
geodesic distances to retrieval non-rigid 3D shapes.

Consider a shape to be a closed set SARn, the geodesic
distance gðp,qÞ between two points p and q is defined to be the
shortest path among all paths connecting these two points on the
shape. Let hðpÞ ¼ ½h1ðpÞ,h2ðpÞ, . . . ,hnðpÞ� denotes the histogram of
geodesic distances (see Fig. 7) from the point p to all points in S,
which is defined as follows:

hiðpÞ ¼
Qi

S ð3Þ
5. Procedures of the canonical form computation. (a) and (d) show the

nal 3D model and its canonical form, respectively.

Fig. 6. Represent a depth-buffer view as a word histogram
Qi ¼ qAS9ði�1ÞDr
gðp,qÞ

gp

r iD

( )
ð4Þ

where gp is the mean of geodesic distance from p to all points, and
D is the separation between histogram bins. Here, n¼100 and
D¼ 0:025. Since the descriptor is based on the geodesic distances,
they are robust to various 3D non-rigid articulations. In addition,
the normalization with respect to average geodesic distances
takes into account the scaling effects.

For each shape, N points (here N¼300) are randomly chosen
and a bag of descriptors is computed. Shape matching is done by
first finding the optimal correspondences between their bags of
descriptors using the Hungarian algorithm.

Let two sets of the descriptors for two shapes A and B be LA :

hA
1 ,hA

2 , . . . ,hA
N and LB : hB

1,hB
2, . . . ,hB

N . The correspondence is estab-
lished through a one-to-one mapping function t such that
t : LA2LB. If a descriptor hi

A is matched to another hi
B then

tðiAÞ ¼ jB and tðjB
Þ ¼ iA. The cost function is defined as

EðhÞ ¼
X

1r irN

EðtðiÞ,iÞ ð5Þ

where the distance between two descriptors is computed using w2

statistic

EðtðiÞ,iÞ ¼
X

1rkrN

½hA
tðiÞðkÞ�hB

i ðkÞ�
2

hA
tðiÞðkÞþhB

i ðkÞ
ð6Þ

Finally, the optimal cost E(h) is used as the similarity measure
between two shapes.
by the vector quantization of its SIFT local features.

Fig. 7. Illustration for the histogram of geodesic distances computed at two points

on the centaur model.
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opposed to the spectrum of the sphere (gray) with same surface area (the position

of the shapes in the plot is irrelevant).
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6.5. LSF: localized statistical features (LSF), by Ohkita, Ohishi,

Kawamura and Ohbuchi

The Localized Statistical Features (LSFs) (see Fig. 8) is a very
simple 3D shape descriptor that has a set of good robustness
properties [47]. The LSF is robust against shape representations;
the LSF can handle 3D models represented as polygon soup,
oriented point set, watertight mesh, water leaking manifold mesh,
etc. The LSF is robust against similarity transformation without
requiring any pose normalization. It is also fairly robust against
geometrical/topological noise. Finally, the LSF is robust against
articulation.

The LSF computes a set of Nk (Nk � 500) localized 3D statistical
features, which are then combined into a feature vector per 3D
model by using the bag-of-words approach. Each statistical
feature is a derivative of the Surflet-Pair-Relation Histograms
(SPRHs) feature by Wahl et al. [48]. The SPRH feature accepts a 3D
model in oriented point set representation. From the point set, the
SPRH computes a 4D joint histogram consisting of three angles
(inner product, etc.) and a distance among all the pairs of the
oriented points.

For the LSF, the SPRH descriptor is made to be local. Each LSF is
computed from the point set within the sphere of radius r about
the Nk keypoints quasi-randomly and uniformly placed on the
surfaces of the model. In LSF, histogram is computed from point
pairs in which one of the points is the keypoint. If there are n

points in the sphere, there are ðn�1Þ pairs of points filling the
histogram.

After the set of local features are computed, they are combined
into a feature vector per 3D model by using the bag-of-features
approach. Here, the LSF feature is used as, i.e., without Manifold
Ranking and other distance metric learning.
6.6. ShapeDNA: Laplace spectra for non-rigid shape analysis, by

Reuter

ShapeDNA is the normed beginning sequence of the spectrum,
i.e. the first eigenvalues, of the Laplace–Beltrami operator (LBO)
for 2D surfaces or 3D solids. It has been introduced in 2005
[30,14] as the first spectral shape signature for non-rigid shape
analysis. Extensions have later been employed for local shape
analysis of structures in the human brain to detect and quantify
disease effects [49] and for automatic shape segmentation and
part correspondence [50]. Over the past half decade, spectral
methods have gained much attention due to their beneficial
properties, most importantly their isometry invariance making
them robust with respect to pose differences (see Fig. 9). Many
methods based on the LBO have emerged for shape processing
and to generate local and global shape signatures, commonly
based on both eigenvalues and eigenfunctions, e.g., to approx-
imate the heat kernel.
Fig. 8. Localized statistical features (LSF).
The relation between shape and sound has been of great
interest in the past. The mathematician Bers first asked the
famous question ‘‘Can one hear the Shape of a Drum?’’ in a talk
[51]. This question inspired Kac who later published a paper [52]
with the same title, asking if the shape of a planar domain is in
fact determined by the spectrum of the Laplacian. He proved this
to be true for disks. The idea to connect the eigenvalues (the
spectrum) with geometric entities dates back at least to Weyl [53]
who showed that the asymptotic behavior of the eigenvalues
depends on the surface area of the drum (or on the volume of a 3D
solid). Obviously the natural frequencies and thus the sound of a
drum are determined by its shape (and material properties,
ignored here). Except for a limited class of shapes known to be
spectrally determined, however, the reverse is not necessarily
true (see e.g. [54] for artificially constructed isospectral twins).

In addition to the isometry invariance, the beginning sequence
of the Laplace spectra has many desirable properties. This
descriptor is insensitive to noise, which influences mainly the
higher eigenvalues. Potential switching of eigenvalues due to
small non-isometric deformations is not problematic (as opposed
to comparing eigenfunctions), since the values must have been
close to begin with. As a vector of numbers the spectrum can be
compared easily and can be computed for many different shape
representations and dimensions. It can deal with objects contain-
ing cavities (when using 3D solids), depends continuously on
shape deformations and can easily be made scaling invariant.
Note that the ShapeDNA does not rely on any prior knowledge
and in contrast to other methods involving eigenfunctions or the
heat kernel, it yields a very simple and robust, isometry invariant
shape descriptor.

Mathematically the eigenvalues l and eigenfunctions u are
defined as the solutions of the Laplacian eigenvalue problem
Du¼�lu, where Du :¼ divðgradðuÞÞ with grad being the gradient
and div the divergence with respect to the underlying domain or
Riemannian manifold in general. Here the normed first smallest N

eigenvalues 0rl1rl2r � � �rln are taken as the shape descrip-
tor (ShapeDNA). The spectrum of a given shape can be approxi-
mated very efficiently even if the shape exhibits not-flat
geometry. Many different discretizations of the Laplace–Beltrami
operator exist ([55] show a comparison of some common dis-
cretizations). These range from simple graph Laplace operators
considering only the connectivity, metric aware linear mesh
operators, to higher order discretizations based on finite elements



Fig. 10. A snake model (a) after preprocessing and its canonical form (b).
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methods (FEMs), introduced in [14] (see also [49] appendix for
implementation details on triangle meshes). In this paper, the
simple linear FEM discretization is utilized to compute the first
eigenvalues of the LBO. Since for shape retrieval only a small
number of eigenvalues is needed linear approaches should be
sufficient. Note that in order to compute a large number of
eigenvalues and eigenfunctions, e.g. to approximate the heat
kernel, higher order approximations may be required due to their
superior accuracy [55].

For the ShapeDNA, in addition to the LBO discretization,
several parameters can be specified. Earlier tests showed that
usually N¼ 10 . . .15 eigenvalues are a good number (less have
often not enough power to distinguish shapes, while including
higher values increases influence of noise and non-isometric
deformations). The first eigenvalue is omitted as it is zero for
closed manifolds. Another parameter is the distance metric to
compare the spectra, where the simple Euclidean distance on the N

dimensional vector of numbers is chosen. Other meaningful
distances (Hausdorff, correlation, different p-norms) did not
improve retrieval rates in prior tests. Finally, in order to compare
shape rather than size of the objects, the spectra need to be
normalized. One option is to multiply the spectrum by the surface

area (applied here), which is the same as normalizing the area of
the shapes before computation. Another option is to divide the
sequence by the first non-zero eigenvalue, which has the same
effect in perfectly isometric cases. However, shapes are usually
not isometric and dividing by the first non-zero eigenvalue may
help to identify similar shapes in spite of noise or near-isometric
deformations. On the other hand it puts a large emphasis on the
first value.

Software to compute eigenvalues and eigenvectors of the
Laplace–Beltrami operator with up to cubic FEM on triangle meshes
has been made freely available for non-profit research at [56].

6.7. Harris3DGeoMap and HKS: by Sipiran and Bustos

This section presents two techniques, including Harris 3D and
Heat Kernel Signatures methods, to tackle the problem of non-
rigid 3D shape retrieval.

6.7.1. Harris3DGeoMap: Harris 3D geodesic map

The idea behind this method is to compute a characteristic
distribution of geodesic distances between the interest points of a
shape. So the method starts by detecting interest points of a shape
using the Harris 3D method [57]. For this paper, adaptive
neighborhoods with d¼ 0:01 are utilized and the 0:01% of the
number of vertices with the highest Harris response are selected
as interest points.

Let F be the set of interest points detected, the complete set of
geodesic distances between each pair of interest points is com-
puted. This set is represented by the matrix D of dimension
9F9� 9F9. Values in the matrix are normalized through dividing
each entry by the maximum value. This makes the values
invariant against scale.

Next, a histogram is created with n bins, which divides the
interval ½0,1� of possible normalized geodesic distances. Then, m

samples are randomly selected from the matrix D, accumulating a
vote in their corresponding bins. Configurations chosen to compute
the histograms are as follows: n¼32, m¼2000. The distance
between two histograms is measured using the Euclidean distance.

6.7.2. HKS: heat kernel signatures based point-to-point matching

Heat kernel signatures method (HKS) [13] has proven to be an
interesting mesh analysis tool. Unlike Harris 3D, HKS computes a
descriptor for each vertex on a mesh. These descriptors are
invariant to non-rigid transformations, allowing to detect interest
points too.

The method starts by detecting the interest points using the
Heat kernel signatures. In this paper, descriptors of length 100 are
used and t¼0.1 of the area of the surface is considered as the
value for comparing the HKS for interest point detection. Once
the interest points have been detected, each interest point has an
associated HKS descriptor. Then, a shape is represented by a set of
HKS descriptors associated to the interest points.

As HKS is based on an intrinsic formulation of a mesh, the
descriptors are expected to be very similar in the presence of non-
rigid transformations. Based on this fact, the set of descriptors
of two shapes are compared. Let S¼ fs1,s2, . . . ,sng and
P¼ fp1,p2, . . . ,smg be the sets of descriptors of two shapes. The
dissimilarity between S and P is defined as

dðS,PÞ ¼

Pn
k ¼ 1 dminðsk,PÞ

n
ð7Þ

where

dminðsi,PÞ ¼min
sj AP

Jsi�sjJ2 ð8Þ

6.8. SD-GDM and MeshSIFT: by Smeets, Hermans, Vandermeulen

and Suetens

In this section, two methods are presented for non-rigid 3D
object recognition. The first, which we will call SD-GDM, is a
global feature method based on an intrinsic object representation,
invariant for isometric deformations (Section 6.8.1). The second
method, MeshSIFT, on the other hand is a local feature method
describing local neighborhoods of interest points on the surface
(Section 6.8.2).

6.8.1. SD-GDM: spectral decomposition of the geodesic distance

matrix

The SD-GDM approach was introduced by Smeets et al. for 3D
non-rigid object recognition [11] and for 3D face recognition [58].

As preprocessing, the surface meshes are downsampled to
about 3000 points, by reducing the number of faces without
moving the remaining points. Next, duplicated and isolated
vertices are removed in the surface mesh. The preprocessed mesh
of a snake model is shown in Fig. 10(a).

The 3D shapes are then represented by a geodesic distance
matrix (GDM), G¼ ½gij�n�n, which is a isometric deformation
invariant matrix. It contains the geodesic distance gij between
each pair of points on the surface. This distance is the length of
the shortest path on the object surface between two points on the
object. Isometric deformations leave these geodesic distances
unchanged. The geodesic distances are calculated with a fast
marching algorithm for triangulated meshes [59,60]. To compen-
sate for scale differences in the 3D shapes, the geodesic distances
are normalized by the square root of the total surface area of the
mesh. An example of such a normalized geodesic distance matrix
is given in Fig. 11.



Fig. 11. The normalized geodesic distance matrix of the preprocessed snake

model, which was shown in Fig. 10(a).

Fig. 12. The neighborhood of a scale space extremum with normals and projected

normals.

Fig. 13. Location and order of the regions w.r.t. the canonical orientation, used for

the construction of the feature vector.
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Next, spectral decomposition (SD) of the GDM provides a
sampling order invariant global feature (shape descriptor). In
[11], it is proved that the modal representation, i.e. the eigenvalue
matrix, is invariant to the sampling order under the condition that
each point on one surface has one corresponding point on the
other surface, which can be assumed for watertight meshes after
resampling. Object recognition reduces to direct comparison of
the shape descriptors without the need to establish explicit point
correspondences. As a trade-off between sensitivity for shape
variations and noise robustness, the 40 largest eigenvalues are
computed. As such, the complexity of the spectral decomposition
is reduced to Oðkn2

Þ, with k¼40 and n� 3000. The modal
representations of the normalized GDMs are then compared using
the mean normalized Manhattan distance as in [11].

Strictly speaking, the SD-GDM method is not a spectral
embedding technique, since the canonical shape is not computed
explicitly. Even if the eigenvectors would be computed, embed-
ding is not straightforward because the normalized GDM is not
positive (semi)definite (unlike the Laplacian matrix or the
weighted Euclidean distance matrix). By taking the absolute
value of the eigenvalues, this equivalent canonical shape can be
computed and visualized (Fig. 10(b)).

The normalized GDM, however, has the advantage for non-
rigid object recognition of the importance of the larger, and
therefore less noise-sensitive, distances. Exponential weightings
of the geodesic distance, expð�g2

ij=s
2Þ, generally provide positive

(semi)definite matrices, but are shown to give worse results for
non-rigid object recognition in [11].
6.8.2. MeshSIFT: scale invariant feature transform for meshes

Similar to the scale invariant feature transform (SIFT) algo-
rithm [25], the meshSIFT algorithm [61] consists of four major
components: keypoint detection, orientation assignment, the
local feature description and feature matching.

The algorithm first identifies salient points on the mesh, by
constructing a scale space that contains smoothed versions of the
input mesh. These smoothed versions are obtained by approximat-
ing a Gaussian filter for meshes as subsequent convolutions of the
mesh with a binomial filter. Next, for the detection of salient points
in the scale space, the mean curvature H is computed for each vertex
and at each scale in the scale space (Hi). Note that the mesh itself is
smoothed and not the function on the mesh (H). Extrema (minima
and maxima) in scale spaces of differences between subsequent
scales (dHi ¼Hiþ1�Hi) are selected as local feature locations.
Finally, the correct scale, which corresponds with some amounts
of smoothing, is assigned to each scale space extremum, leading to a
keypoint with an assigned scale.

In order to obtain an orientation-invariant descriptor, each
keypoint is assigned a canonical orientation. By expressing the
neighborhood size in function of the scale, we ensure a scale
invariant descriptor as well. First, for each vertex within this
region, the normal vector is computed (using [62]) and the
geodesic distance to the respective keypoint (using [60]) is
determined. Next, as shown in Fig. 12, all calculated normal
vectors are projected onto the tangent plane to the mesh contain-
ing the keypoint. These projected normal vectors are gathered in a
weighted histogram comprising 360 bins. Each histogram entry is
Gaussian weighted with its geodesic distance to the keypoint. The
resulting histogram is smoothed by convolving it three times with
a Gaussian filter for a more accurate and robust localization of the
canonical orientation. Finally, the highest peak in the histogram
and every peak above 80% of this highest peak value is selected as
a canonical orientation. If more than one canonical orientation
exists for a keypoint, this results in multiple keypoints, each
assigned one of the canonical orientations.

The local descriptor provides for each keypoint (with assigned
scale and canonical orientation) a feature vector consisting of
concatenated histograms. Each of these histograms is calculated
over a small circular region, as shown in Fig. 13. In each region two
histograms with eight bins each are computed. The first contains the
shape index, which is a combination of minimum and maximum
curvature. The second contains the slant angles, which are defined
as the angle between every projected normal and the canonical
orientation. First, each entry for both histograms is Gaussian
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weighted with the geodesic distance to the keypoint and with the
geodesic distance to the center of the region. Next, every histogram
is normalized and clipped, reducing the influence of large histogram
values. Finally, the histograms are concatenated in one feature
vector.

In order to find corresponding features, two sets of feature
vectors are compared using the angle as similarity measure. The
angles of all candidates are then ranked in ascending order. If the
ratio between the first and the second is smaller than 0.9, a match
is accepted; other matches are rejected. The number of matches is
simply used as similarity criterion. The similarity matrix is
converted into a dissimilarity matrix by subtracting the matrix
from the maximum number of matches.

6.9. PatchBOF: bag-of densely-sampled local visual features, by

Tabia and Daoudi

The method consists of the following four steps (see [63] for
more details):
(1)
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Detection and description of 3D patches: Let v1 and v2 be the
farthest vertices (in the geodesic sense) on a connected
triangulated surface S. Let f1 and f2 be two scalar functions
defined on each vertex v of the surface S, as follows:
f 1ðvÞ ¼ dðv,v1Þ and f 2ðvÞ ¼ dðv,v2Þ where dðx,yÞ is the geodesic
distance between points x and y on the surface. In a critical
point classification, a local minimum of fi(v) is defined as a
vertex vmin such that all its level-one neighbors have a higher
function value. While, a local maximum is a vertex vmax such
that all its level-one neighbors have a lower function value.
Let F1 be the set of local extrema (minima and maxima) of f1

and F2 be the set of local extrema of f2. The set of feature
points F of the triangulated surface S is defined as the closest
intersecting points in the sets F1 and F2. Given a 3D object O,
for every feature point FiAF, a descriptor PðFiÞ is defined for Fi

and the geodesic distances fdðFi,vÞ; 8vAVg with V is the set of
all vertices on the surface are calculated. Consider f the
e 1
ieval performance of 11 methods evaluated using five standard measures on

hole database.

thors Methods NN (%) FT (%) ST (%) E (%) DCG (%)

wamura FOG 96.8 81.7 90.3 66.0 94.4

voue BOW-LSD 95.5 67.2 80.3 57.9 89.7

n MDS-CM-BOF 99.5 91.3 96.9 71.7 98.2

uyen BOGH 99.3 81.1 88.4 64.7 94.9

kita LSF 99.5 79.9 86.3 63.3 94.3

uter ShapeDNA 99.2 91.5 95.7 70.5 97.8

iran Harris3DGeoMap 56.2 32.5 46.6 32.2 65.4

iran HKS 83.7 40.6 49.7 35.3 73.0

eets MeshSIFT 99.5 88.4 96.2 70.8 98.0

eets SD-GDM 100.0 96.2 98.4 73.1 99.4

bia PatchBOF 74.8 64.2 83.3 58.8 83.7

Fig. 14. Bar charts of the retrieval accuracies of 11 methods evaluated on th
distribution of vertices according to these distances, the
descriptor PðFiÞ is defined as a R-dimensional vector:
PðFiÞ ¼ ðp1, . . . ,pRÞ where pr ¼

R r=R
ðr�1Þ=R f ðdÞdd. PðFiÞ is a R-bin

histogram of vertex distribution of geodesic distances mea-
sured from Fi. In order to make the descriptors comparable
between different shapes, the geodesic function d is scaled by
the geodesic diameter of the shape.
(2)
 Shape vocabulary construction: The vocabulary used in this
method is a way of constructing a feature vector that relates
descriptors in 3D-object query to descriptors previously seen
in the indexing step. The k-means algorithm is chosen for
clustering. In order to determine the parameter k, the k-
means method is implemented several times with different
number of desired k, and then the final clustering giving the
lowest empirical risk is selected.
(3)
 Shape histogram computing: Descriptors in the 3D object are
assigned to the nearest neighbor keyshapes in the vocabulary.
Then each object is represented using an histogram whose ith
bin contains the number of ith keyshapes in that object.
(4)
 Shape matching: Compare two objects, treating their bag of
keyshapes as feature vectors, and thus determine their dissim-
ilarity by calculating L2 difference between two histograms.
7. Results

In this section, we present and compare the results of the above-
mentioned 11 methods. Given the 11 dissimilarity matrices, evalua-
tions for these approaches are carried out not only on the average
performance of the whole database, but also on the result corre-
sponding to each specific class. We evaluate the retrieval perfor-
mance by using the five quantitative statistics (i.e., NN, FT, ST, E, and
DCG) and the precision–recall curve described in Section 4.

Table 1 shows the retrieval accuracies of all 11 algorithms
evaluated on the whole database. We observe that most of these
methods perform well in this benchmark. For instance, DCG
values of seven methods are greater than 0.940 and eight
methods have NN values that are above 0.950. In Fig. 14, we also
provide bar charts to intuitively compare the results of those
methods evaluated using five quantitative measures, respectively.
As we can see from Table 1 and Fig. 14, Smeets’s SD-GDM clearly
outperforms all other algorithms, while the second and third best
methods are not so obvious. Considering the values of FT, Reuter’s
ShapeDNA method gets better performance than Lian’s MDS-CM-
BOF, but if we base the evaluation on NN, ST, E, and DCG, Lian’s
MDS-CM-BOF would take the second place. Similar observations
can be made from Fig. 15, which shows precision–recall curves of
all these algorithms on the whole database.

Next, we show the precision–recall curves of these 11
approaches evaluated for selected 12 classes of the database in
Fig. 16. We find that none of these methods performs best for all
kinds of objects. For example, Smeets’s SD-GDM obtains the best
results for lots of categories but not ant, bird2, paper, pliers, spider,
e whole database using five standard measures, respectively.
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woman models, etc., while although Tabia’s PatchBOF performs
worst in the retrieval of woman models, it outperforms others for
lamp objects. As shown in Fig. 2, our database contains a set of
models which have similar overall appearances but belong to
various categories because they are different in the details of local
regions or/and topological structures. This makes the new
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Fig. 15. Precision–recall curves of 11 methods evaluated for the whole database.

Fig. 16. Precision–recall curves of 11 methods ev
benchmark more challenging than other non-rigid 3D databases.
However, as we can see from Fig. 16, the challenge can be well
resolved by several algorithms described in this paper. For
example, Lian’s MDS-CM-BOF are able to perfectly discriminate
two types of bird models (i.e., bird1 and bird2), which have
slightly different skeletons, while Smeets’s SD-GDM obtains
considerably high retrieval accuracies for the bird models as well
as the human models (i.e., man and woman) that possess dissim-
ilar features based on gender. Generally speaking, most of these
methods (e.g., Smeets’s SD-GDM, Lian’s MDS-CM-BOF, Reuter’s
ShapeDNA, etc.) work fairly well for every class in this database,
as their precision–recall curves are all in the top right parts of
these figures.

Analyzing the 11 methods compared in this paper, we find that
the most popular approach (five methods, i.e., FOG, BOW-LSD, MDS-
CM-BOF, LSF, and PatchBOF) is to employ the bag-of-features
method to quantize a model’s local features into a word histogram.
There also exist methods (two runs including Smeets’s MeshSIFT
and Sipiran’s HKS) that extract salient local features and match them
directly to compare 3D shapes. Lian’s MDS-CM-BOF is basically a
visual similarity based method. Mainly because of the utilization of
both 3D Canonical Forms and local features, it becomes insensitive
against isometric transformations. Other four methods (including
BOGH, ShapeDNA, Harris3DGeoMap, and SD-GDM) utilize specifi-
cally designed shape descriptors that are based on various isometry-
invariant global properties of 3D models. We also observed that (see
[16]), the combination of several different kinds of methods can
result in better retrieval accuracies, and it is possible to further
aluated for 12 different classes, respectively.



Fig. 17. Examples of queries (first column) from our database and the corresponding top eight retrieved models using Lian’s MDS-CM-BOF method. The retrieved models

are ranked from left to right based on the increasing order of dissimilarity.
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improve performance by applying some unsupervised machine
learning algorithms (e.g., manifold ranking).

Fig. 17 shows some queries and their corresponding top eight
retrieved objects from this database using Lian’s MDS-CM-BOF
algorithm. As we can see from this figure, the retrieved 3D models
in the top eight positions of the rank lists all belong to the same
categories of their corresponding queries, which again verifies the
effectiveness of the evaluated method in non-rigid 3D shape
retrieval applications. For more results, we refer the reader to
our web site [1], where the new non-rigid 3D shape benchmark
and the evaluation code are also freely available for academic use.
8. Conclusion

In this paper, we first proposed an efficient approach to generate
a large amount of non-rigid 3D watertight meshes, based on which a
new non-rigid 3D shape benchmark was developed. We then
presented a number of non-rigid 3D shape retrieval algorithms
and compared their performance by carrying out experiments on
the new benchmark. Our results demonstrated that SD-GDM, MDS-
CM-BOF, and ShapeDNA are the three most discriminative methods
among the 11 approaches we evaluated, but none of these 11
methods performs best for all kinds of objects.

This paper is based on the SHREC’11 Track: Shape Retrieval on

Non-rigid 3D Watertight Meshes which is the second attempt in the
history of SHREC to specifically focus on the performance evalua-
tion of non-rigid 3D shape retrieval algorithms. Compared to the
first SHREC non-rigid 3D shape retrieval track [64] (200 models
and 3 groups) we organized in 2010, both the size of the database
(600 models) and the number of participants (nine groups) tripled
in 2011, which indicates that more and more researchers have
become interested in analyzing non-rigid 3D shapes. We believe
that, with so many participants taking part in this track, methods
described in this paper constitute a good representation of the
state of the art in this important research field, and we hope that
the new benchmark would further promote the investigation of
non-rigid 3D shape retrieval.

Several directions of future work are listed as follows: (1) keep
updating our benchmark by using the proposed method to
generate more models for the database; (2) build non-rigid 3D
shape benchmarks for some specific applications (e.g., the retrie-
val of proteins, faces, animals, etc.); (3) select different kinds of
approaches carefully and integrate them optimally to develop
more discriminative and efficient non-rigid 3D shape retrieval
systems.
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